Jozef Zurada

نویسنده

  • Jozef Zurada
چکیده

The failure or success of the banking industry depends largely on the industry’s ability to properly evaluate credit risk. In the consumer-lending context, the bank’s goal is to maximize income by issuing as many good loans to consumers as possible while avoiding losses associated with bad loans. Mistakes could severely affect profits because the losses associated with one bad loan may undermine the income earned on many good loans. Therefore banks carefully evaluate the financial status of each customer as well as their credit worthiness and weigh them against the banks’ internal loan-granting policies. Recognizing that even a small improvement in credit scoring accuracy translates into significant future savings, the banking industry and the scientific community have been employing various machine learning and traditional statistical techniques to improve credit risk prediction accuracy. This paper examines historical data from consumer loans issued by a financial institution to individuals that the financial institution deemed to be qualified customers. The data consists of the financial attributes of each customer and includes a mixture of loans that the customers paid off and defaulted upon. The paper uses three different data mining techniques (decision trees, neural networks, logit regression) and the ensemble model, which combines the three techniques, to predict whether a particular customer defaulted or paid off his/her loan. The paper then compares the effectiveness of each technique and analyzes the risk of default inherent in each loan and group of loans. The data mining classification techniques and analysis can enable banks to more precisely classify consumers into various credit risk groups. Knowing what risk group a consumer falls into would allow a bank to fine tune its lending policies by recognizing high risk groups of consumers to whom loans should not be issued, and identifying safer loans that should be issued, on terms commensurate with the risk of default.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Generation of Data Mining Applications, Edited by Jozef Zurada and Medo Kantardzic

With the advent of massively parallel computer systems, scientists are now able to simulate complex phenomena (e.g., explosions of a stars). Such scientific simulations typically generate largescale data sets over the spatio-temporal space. Unfortunately, the sheer sizes of the generated data sets make efficient exploration of them impossible. Constructing queriable statistical models is an ess...

متن کامل

Improving Performance of Classification Models with Textual Data

The main objective in this study is to measure the effect of unstructured text on classification performance. A large dataset of aviation incidents reports was used in this study. In aviation incidents the proportion attributable to human factors is close to 90%. Therefore accurate identification of the presence of human factors in past aviation incidents is critical to improving aviation safet...

متن کامل

Comparison Of The Performance Of Several Data Mining Methods For Bad Debt Recovery In The Healthcare Industry

The healthcare industry, specifically hospitals and clinical organizations, are often plagued by unpaid bills and collection agency fees. These unpaid bills contribute significantly to the rising cost of healthcare. Unlike financial institutions, health care providers typically do not collect financial information about their patients. This lack of information makes it difficult to evaluate whe...

متن کامل

Computational Intelligence in Patient-Sensitive Medical Decision Systems

This report summarizes the work sponsored by IEEE Walter Karplus Summer Research grant awarded in 2007 by IEEE Computational Intelligence Society. Within this project a cooperative research was performed at the Computational Intelligence Laboratory at the University of Louisville and Duke Advanced Imaging Laboratories at Duke University Medical Center. In the project, ensemble techniques were a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011